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a b s t r a c t 

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering pre- 

cision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into 

subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering 

approaches are often confounded by anatomical and functional variations not related to a disease or 

pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, 

therefore, capture disease-specific patterns more effectively. An additional limitation of both unsuper- 

vised and semi-supervised conventional machine learning methods is that they typically model, learn 
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Table of abbreviations 

Item Abbreviation 

Alzheimer’s disease AD 

Schizophrenia Scz 

Grey matter Gm 

Mild cognitive impairment MCI 

Healthy control CN 

Machine learning ML 

Adjusted Rand index ARI 

Atrophy strength level ASL 

Patients PT 

Subtype Sub 

Cross-validation CV 

Quality control QC 

ARIs during CV ARI_CV 

ARIs for ground truth ARI_GT 

T1-weighted MRI T1w MRI 

Magnetic resonance imaging MRI 

Non-negative matrix factorization NMF 

Voxel-based analysis VBA 

Multivariate pattern analysis MVPA 

Support vector machine SVM 

Table of variables 

Item Abbreviation 

Number of clusters/subtypes k 

Number of components M 

Number of subjects N 

Number of voxels D 

Input matrix X 

Component matrix C 

Loading coefficient matrix L 

Input label y 

SVM weight w 

SVM bias b 

Subtype membership matrix S 

Final subtype membership matrix after 

consensus clustering 

S ∗

Index of number of subjects i 

Index of number of clusters/subtypes j 

. Introduction 

Statistical and machine learning (ML) methods have been 

idely applied to neuroimaging data to derive disease-specific 

maging signatures ( Davatzikos, 2019 ). Voxel-based analysis (VBA) 

echniques generally involve performing independent mass uni- 

ariate statistical tests on all voxels ( Ashburner et al., 1998 ; 

shburner and Friston, 20 0 0 ; Davatzikos et al., 2001 ; Friston et al.,

994 ), aiming to unveil detailed spatial maps of brain structures 

hat are associated with clinical variables of interest. However, 
2 
sis of feature sets pre-defined at a fixed anatomical or functional scale

terest). Herein we propose a novel method, “Multi-scAle heteroGeneity

C), to depict the multi-scale presentation of disease heterogeneity, which

d semi-supervised clustering method, HYDRA. It derives multi-scale and

epresentations and exploits a double-cyclic optimization procedure to ef-

inter-scale-consistent disease subtypes. More importantly, to understand

e clustering model can estimate true heterogeneity related to diseases,

stematic semi-simulated experiments to evaluate the proposed method

sample from the UK Biobank ( N = 4403). We then applied MAGIC to

 disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) pa-

ntial and challenges in dissecting the neuroanatomical heterogeneity of

together, we aim to provide guidance regarding when such analyses can

ith caution. The code of the proposed method is publicly available at

GIC . 

© 2021 Elsevier B.V. All rights reserved. 

BA approaches suffer from limited statistical power since they ig- 

ore multivariate data interactions. In contrast, multivariate pat- 

ern analysis (MVPA) techniques have gained traction due to their 

bility to capture complex multivariate interactions in data. Clas- 

ical multivariate models, such as support vector machine (SVM), 

ave been extensively utilized in the neuroimaging community 

o reveal imaging signatures for several brain diseases and dis- 

rders ( Cuingnet et al., 2011 ; Ecker et al., 2010 ; Gaonkar and

avatzikos, 2013 ; Habes et al., 2016 ; Koutsouleris et al., 2015 ; 

ao et al., 2004 ; Rathore et al., 2017 ; Samper-González et al., 2018 ;

arol et al., 2018 ). More recently, highly nonlinear and multivari- 

te deep learning models have also been applied to brain model- 

ng ( Bashyam et al., 2020 ; Schulz et al., 2020b ; Wen et al., 2020a ).

owever, due to possible over-fitting, these models’ interpretability 

nd generalizability in low sample size regimes have been under 

crutiny. 

Whether performing mass univariate or multivariate analysis, 

t is typically assumed that a relatively pure pathological pattern 

xists in the disease population. The disease signature is often 

resented via a voxel-wise or region of interest (ROI)-wise sta- 

istical map of the case-control group differences, i.e., between 

ealthy controls (CN) and patients (PT). However, in nature, dis- 

ase effects are commonly heterogeneously presented across differ- 

nt subpopulations due to the diversity of underlying risk factors. 

uch model assumption violations may cause the statistical learn- 

ng to yield underpowered or false-positive results ( Dwyer et al., 

018 ). Tackling this issue is of great importance given ample ev- 

dence of disease heterogeneity ( Murray et al., 2011 ; Noh et al., 

014 ; Whitwell et al., 2007 ) and increasing appreciation that this 

ay undermine the precision of clinical treatment guidelines and 

bscure research findings ( Insel and Cuthbert, 2015 ). 

Disentangling disease heterogeneity elucidates the underlying 

athological mechanisms and potentially enables clinicians to of- 

er targeted treatment options to different patient subpopulations. 

onlinear methods, such as deep neural networks, implicitly han- 

le heterogeneity. However, there still exists a gap between these 

odels and human interpretability, especially for clinicians who 

requently seek discrete disease subtypes ( Miotto et al., 2018 ). 

hus, many recent effort s to discover the heterogeneous nature 

f brain diseases have investigated different clustering algorithms 

 Chand et al., 2020 ; Dong et al., 2016a , 2016b ; Dwyer et al.,

018 ; Ezzati et al., 2020 ; Filipovych et al., 2012 ; Honnorat et al.,

019 ; Jeon et al., 2019 ; Jung et al., 2016 ; Lubeiro et al., 2016 ;

ettiksimmons et al., 2014 ; Ota et al., 2016 ; Pan et al., 2020 ;

ark et al., 2017 ; Planchuelo-Gómez et al., 2020 ; Poulakis et al., 

020 , 2018 ; Sugihara et al., 2016 ; Ten Kate et al., 2018 ; Varol et al.,

017 ; Young et al., 2018 ; Zhang et al., 2016 ). These methods can

e divided into two categories depending on whether the cluster- 

https://github.com/anbai106/MAGIC
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ng algorithm is unsupervised or semi-supervised. 1 Unsupervised 

lustering techniques, such as K-means ( Hartigan and Wong, 1979 ), 

ierarchical clustering ( Day and Edelsbrunner, 1984 ), and non- 

egative matrix factorization (NMF) ( Lee and Seung, 2001 ), aim 

o directly cluster the patients based on their demographic in- 

ormation, clinical presentation, or imaging biomarkers. However, 

he results of these methods have often been confounded by 

on-pathologic processes, such as demographics. To cope with 

hese covariate confounds, semi-supervised clustering methods 

 Dong et al., 2016a ; Varol et al., 2017 ) leverage the group-level in-

ormation and attempt to nullify the effect of nuisance variables. 

hese methods generate clusters based on the pattern differences 

etween the CN population and the subpopulations of patients 

i.e., subtypes/clusters), hypothesizing that each pattern represents 

 distinct disease dimension or subtype. The main limitation of 

his family of methods is that they usually seek subtypes on a sin- 

le scale set of features (e.g., atlas-based ROIs, voxels, networks), 

hich makes the result heavily dependent on the level of granu- 

arity of the feature space. However, there has been abundant ev- 

dence that the brain is fundamentally constructed by multi-scale 

ntities ( Bassett and Siebenhühner, 2013 ; Betzel and Bassett, 2017 ). 

herefore, it is beneficial to analyze disease heterogeneity on mul- 

iple spatial scales and seek a compatible clustering solution across 

cales, which will potentially better align with the brain’s multi- 

cale nature. 

Despite the fact that these clustering analyses have always led 

o a cluster solution, there are no clear guidelines enabling the va- 

idity of the cluster solution to be determined, presumably due to 

he lack of the ground truth in clustering problems or the “curse 

f dimensionality” in brain imaging settings. A previous study 

 Varol et al., 2017 ) designed simulation experiments to validate the 

roposed model. However, the simulation data were generated by 

dding noise in the low-dimensional feature space under a specific 

istribution (i.e., Gaussian distribution), which was far less realis- 

ic than actual neuroimaging data. Thus, a more sophisticated and 

ystematic simulation is needed to understand the conditions un- 

er which clustering succeeds or fails with high-dimensional brain 

maging data. Specifically, in the current work, we performed an 

xtensive and systematic evaluation of clustering performance us- 

ng a large healthy control sample (UK Biobank, N = 4403) in a 

emi-simulated setting. The term semi-simulated here refers to the 

act that brain heterogeneity may stem from various sources, and 

he simulation was performed with data from real healthy control 

ndividuals. We simulated the heterogeneity due to disease effects 

y imposing abnormalities (i.e., increasing or decreasing voxel in- 

ensity) on specific regions of tissue images. Notably, the hetero- 

eneity caused by normative brain aging was inevitably retained 

n the original data because this is biologically realistic and con- 

ributs to the semi-simulated variability (refer to Section 4.2 for 

ore details). With known ground truth for the number of clusters 

 k ) and the cluster/subtype membership assignment, we quantita- 

ively investigated the clustering model’s performance under a va- 

iety of conditions, including varying degrees of brain atrophy, dif- 

erent levels of heterogeneity, overlapping disease subtypes, class 

mbalance, and varying sample sizes. 

This work is a comprehensive extension of our preliminary re- 

ults presented in Medical Image Computing and Computer As- 

isted Interventions (MICCAI) 2020 ( Wen et al., 2020b ). The con- 

ribution is two-fold. First, to address the aforementioned multi- 

cale limitations, we propose a data-driven and multi-scale semi- 

upervised method termed MAGIC for “Multi-scAle heteroGeneity 

nalysIs and Clustering”. Specifically, MAGIC extracts multi-scale 
1 The term semi-supervised refers to the lack of subtype labels and the use of CN 

s a reference group to guide the clustering. 

m  

l

X  

3 
eatures, from coarse to fine granularity, via orthogonal projec- 

ive non-negative matrix factorization (opNMF) applied for vary- 

ng scales (i.e., number of components). opNFM has been a very 

ffective unbiased, data-driven method for extracting biologically 

nterpretable and reproducible feature representations in the con- 

ext of neuroimaging datasets ( Sotiras et al., 2015 ), leading to dis- 

ase subtypes in an explainable space ( Schulz et al., 2020a ). A 

onvex polytope classifier, based on principles of the method in 

 Varol et al., 2017 ), is applied to these multi-scale features through 

 double-cyclic optimization procedure to yield robust clusters that 

re consistent across different scales. Secondly, the results of our 

emi-simulated experiments allow us to compare MAGIC with pre- 

ious standard clustering methods and provide future clustering 

nalysis guidelines. Specifically, applying the proposed method to 

lzheimer’s disease (AD) and mild cognitive impairment (MCI) and 

chizophrenia (SCZ) patients provides greater confidence regarding 

he validity of the subtypes claimed in actual clinical applications. 

We organize the remainder of the paper as follows. In 

ection 2 , we provide the details of the proposed algorithm. 

ection 3 details the primary datasets and image preprocess- 

ng steps. Section 4 presents the results of the experiments. 

ection 5 concludes the paper by discussing our main observations, 

ethod limitations, and future directions. 

. Methods 

MAGIC builds upon the HYDRA formulation ( Varol et al., 

017 ) and opNMF algorithms ( Sotiras et al., 2015 ) to yield an

nter-scale-consistent clustering solution. It generates an inter- 

retable and spatially adaptive multi-scale representation via op- 

MF, which drives semi-supervised clustering. The schematic dia- 

ram of MAGIC is shown in Fig. 1 . 

We detail the mathematical formulation of the optimization 

outine in the following subsections. To establish notation, let N 

enote the number of subjects and D the number of voxels in each 

mage. We denote the data as a matrix X that is organized by ar- 

anging each image as a vector per column ( X = [ x 1 , …, x N ], x i 
 R D ). We use binary labels to distinguish the patient and control 

roups, where 1 represents patients (PT) and −1 means healthy 

ontrols (CN) (i.e., y ∈ { −1 , 1 } N ). For subtype results, the subtype 

embership matrix (a.k.a., polytope) is denoted as S ∈ R N x k be- 

ore consensus clustering and S ∗ as the final subtype membership 

atrix after consensus clustering. 

.1. Multi-scale feature extraction via orthogonal projective 

on-negative matrix factorization 

MAGIC utilizes opNMF, an unsupervised representation learning 

lgorithm, to extract multi-scale and interpretable anatomical com- 

onents covering the whole brain. The number of components ( M ) 

s optimized in opNMF and controls the granularity of the anatom- 

cal components (e.g., opNMF components at different granularities 

an be seen in Fig. 1 C). 

The opNMF aims to represent the input matrix X as a rank- 

 matrix that is the product of two non-negative matrices: i) C , 

ermed as the component matrix, captures the groups of voxels 

hat covary most and offers an interpretable anatomical parcella- 

ion ( C = [ c 1 , …, c M 

], c i ∈ R D ), and ii) L ∈ R M x N , termed as the load-

ng coefficient matrix, captures the amount of each spatial com- 

onent that makes up each subject. The opNMF objective is to be 

inimized as follows: 

in 

c 

∥∥X − CL 2 F 

∥∥ sub ject to C ≥ 0 , L ≥ 0 , C T C = I, L = C T X (1)

This formulation differs from the standard NMF in that the 

oading coefficient matrix is obtained by projecting the input data 

 to the estimated component matrix C (i.e., L = C T X ), and the
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Fig. 1. Schematic diagram of the MAGIC algorithm. MAGIC first generates multi-scale feature representations of the brain anatomy from coarse to fine resolutions and 

then cyclically solves semi-supervised clustering subproblems with each of these feature representations. Generally, it consists of three key components. A) opNMF enables 

the extraction of multi-scale, biologically interpretable feature representations in a data-driven manner. B) max-margin multiple SVM classifiers are utilized to construct a 

nonlinear polytope for simultaneous classification and clustering. In this fashion, the patients’ subtypes or subpopulations are clustered based on their distance from the 

polytope. C) the double-cyclic optimization procedure is adopted to fuse the knowledge from multi-scale features for inter-scale consistent clustering solutions. Specifically, 

the cluster polytope is first initialized at a specific representation scale. After optimization, the cluster polytope is transferred to the next representation scale, allowing the 

clustering routine to be guided by all anatomical scales. Furthermore, the polytope initialization is performed at different anatomical scales to further remove bias from the 

clustering solutions. Lastly, the resulting multi-scale clustering solutions are fused through consensus clustering to yield a final stable subtype membership assignment. X : 

input matrix; C : component matrix; L : loading coefficient matrix; CN: healthy control; Sub: subtype; M : number of components. S is the initial polytope solution. S1 , S2 , 

and S3 are the fine-tuned polytope for different initialization models, and S ∗ is the final polytope after the consensus clustering procedure. 
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rthogonality constraint is imposed on the component matrix 

 C T C = I , where I denotes the identity matrix). Therefore, the op-

MF searches only the parameters of the component matrix during 

ptimization ( Yang and Oja, 2010 ). 

The solution of minimizing the abovementioned objective is a 

on-convex problem and can be achieved by iteratively updating 

he multiplicative rule proposed in ( Yang and Oja, 2010 ): 

 

′ = C 
X X 

T C 

C C T X X 

T C 
(2) 

Please refer to Sotiras et al. (2015) for more details about op- 

MF and ( Yang and Oja, 2010 ) for convergence analyses. Once the 

lgorithm converges, we recover the loading coefficients by the 

rojective step: L = C T X . Moreover, this property allows us to 

eadily apply the trained model to external unseen data. 

.2. Max-margin multiple SVM classifiers for clustering 

Once the high dimensional imaging data is reduced to a lower- 

imensional representation using opNMF, we apply the HYDRA al- 

orithm ( Varol et al., 2017 ) on the set of loading coefficients, L

 R M x N and the corresponding set of diagnostic labels y ∈ { −1 , 1 } N 
o perform clustering of the patients. 

The HYDRA algorithm utilizes multiple large margin classifiers 

e.g.., k SVMs) to estimate a nonlinear polytope that separates the 
4 
wo classes with maximized distance (or margin) from the deci- 

ion boundaries for each sample, thus simultaneously serving for 

lassification and clustering. The fundamentals of the HYDRA algo- 

ithm are presented in supplementary eMethod 1. Please refer to 

arol et al. (2017) for more details. In general, this algorithm solves 

or a convex polytope classification boundary that discriminates 

atients from controls with a maximum margin. In essence, the 

olytope is composed of the k hyperplanes of the k linear SVMs, 

nd each face corresponds to one subtype/cluster. The objective of 

aximizing the polytope’s margin can be summarized as: 

min 

{ w j , b j } k j=1 

k ∑ 

j=1 

∥∥w j 
2 
2 

∥∥
2 

+ μ
∑ 

i | y i = +1 

j 

1 

k 
max 

{
0 , 1 − w 

T 
j L 

T 
i − b j 

}

+ μ
∑ 

i | y i = −1 

j 

S i, j max 
{

0 , 1 + w 

T 
j L 

T 
i + b j 

}
(3) 

here w j and b j are the weight and bias for each hyperplane, re- 

pectively. μ is a penalty parameter on the training error, and S is 

he subtype membership matrix of dimension NxK containing in- 

ormation regarding whether a sample i belongs to subtype j . In 

eneral, this optimization problem is non-convex and is jointly op- 

imized by iterating on solving for the polytope faces’ parameters 
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sing standard SVM solvers ( Chang and Lin, 2011 ) and solving for 

he cluster memberships as follows: 

 i , j = 

⎧ ⎨ 

⎩ 

1 , j = argmax 
j 

(
w 

T 
j 
L T + b j 

)

0 , j � = argmax 
j 

(
w 

T 
j 
L T + b j 

) (4) 

.3. Double-cyclic optimization procedure for scale-independent 

ubtypes 

MAGIC optimizes the clustering objective, i.e., Eq. (3) , for each 

natomical scale as a sub-optimization problem. To fuse the multi- 

cale clustering solutions and enforce the clusters to be scale- 

ndependent, MAGIC adopts a double-cyclic procedure that trans- 

ers and fine-tunes the subtype membership matrix ( S ) between 

ifferent scales of features, i.e., solving the sub-optimization prob- 

ems with the single-scale feature representation in a loop ( Fig. 1 ). 

The double-cyclic fine-tuning procedure aims to offer scale- 

ndependent clustering solutions across multi-scale features. Cycle 

 ( Fig. 1 C components M 1, M 2, and M 3 in a row) aims to derive

 clustering solution that is informed by features across all scales. 

his is achieved by iteratively solving Eq. (2) using features derived 

t different scales. Specifically, the clustering membership matrix 

 is first solved for a particular set of features. It is then trans-

erred to the next block, where it is used as initialization for fine- 

uning driven by features from a different scale. This procedure is 

epeated till features from all anatomical scales have been used 

o inform the final clustering membership matrix ( S1 in Fig. 1 C). 

ince each optimization cycle starts at a pre-determined anatom- 

cal scale, an additional Cycle 2 ( Fig. 1 C components M 1, M 2, and

 3 in a column) is executed using all different anatomical scales 

o initialize the model. This eliminates any initialization biases ( S1 , 

2 , and S3 in Fig. 1 C) and results in multiple clustering solutions.

o determine the final subtype assignment ( S ∗ in Fig. 1 C), we per-

orm consensus clustering. Consensus is achieved by grouping to- 

ether samples that are assigned to the same cluster across the 

olutions estimated as part of Cycle 2 ( Varol et al., 2017 ). Precisely,

e first compute a co-occurrence matrix based on the clustering 

esults of Cycle 2 and then use it to perform spectral clustering 

 Ng et al., 2001 ). 

MAGIC can be directly applied to unseen external data with the 

ollowing procedure. First, opNMF is not required to be retrained to 

nseen data because multi-scale feature extraction can be achieved 

ia the projection L = C T X . Subsequently, each single-scale fea- 

ure is fit to each polytope ( S1 , S2 , and S3 in Fig. 1 ) to derive the

ingle-scale clustering solution. Finally, a similar consensus proce- 

ure is used to derive the final membership ( S ∗ in Fig. 1 ). 

. Materials 

.1. Datasets 

Three datasets are used in the current study: the UK Biobank 

UKBB) study ( Miller et al., 2016 ), the Alzheimer’s Disease Neu- 

oimaging Initiative (ADNI) study ( Petersen et al., 2010 ), and the 

sychosis Heterogeneity Evaluated via Dimensional Neuroimag- 

ng (PHENOM) study ( Chand et al., 2020 ; Rozycki et al., 2018 ;

atterthwaite et al., 2010 ; Schnack et al., 2014 ; Wolf et al., 2014 ;

ood et al., 2001 ; Zhang et al., 2015a ; Zhu et al., 2016 ; Zhuo et al.,

016 ). 

The UKBB is a dataset of approximately 50 0,0 0 0 UK adults sam- 

led via population-based registries ( http://www.ukbiobank.ac.uk ). 

articipants were recruited from across the United Kingdom, and 

nitial enrolment was carried out from 2006 to 2010. Participants 

rovided socio-demographic, cognitive, and medical data via ques- 

ionnaires and physical assessments. Starting in 2014, a subset 
5 
f the original sample later underwent brain magnetic resonance 

maging (MRI). The UKBB data used in this work comprises 4403 

N participants whose T1-weighted (T1w) MRI was collected us- 

ng Siemens 3T Skyra. The parameters of the 3D MPRAGE se- 

uences are as follows: resolution = 1.0 × 1.0 × 1.0 mm; field- 

f-view = 256 mm x256 mm; TR = 20 0 0 ms; TE = 2.01 ms;

I = 880 ms; slices = 208; flip angle = 8 ° ( Miller et al., 2016 ). 

The ADNI was launched in 2003 as a public-private partner- 

hip ( https://www.adni-info.org/ ). The primary goal of ADNI has 

een to test whether serial MRI, positron emission tomography 

PET), other biological markers, and clinical and neuropsycholog- 

cal assessment can be combined to measure the progression of 

CI and early AD. The ADNI dataset used in our experiments com- 

rises 1728 participants from ADNI 1, 2, 3, and GO, for whom a 

1w MRI was available at baseline: 339 CE, 541 CN, and 848 MCI 

ere finally included. ADNI T1w images were performed both on 

.5T and 3T scanners with similar protocol parameters: 256 × 256 

atrix; voxel size = 1.2 × 1.0 × 1.0 mm; TI = 400 ms; TR = 6.98 ms;

E = 2.85 ms; flip angle = 11 °
The PHENOM dataset is an international consortium spanning 

ve continents to better understand neurobiological heterogeneity 

n schizophrenia. The consortium aims to delineate schizophrenia 

rain subtypes with large sample sizes, enriched sample hetero- 

eneity, and methodological advances that generalize across dis- 

arate sites and ethnicities. The PHENOM dataset used in this 

tudy includes 1166 participants (583 CN, and 583 SCZ patients). 

n the current study, we included T1w images from eight sites of 

he PHENOM consortium with diverse imaging protocols. 

These datasets are described in detail in supplementary 

Method 2. Table 1 summarizes the basic demographics of all par- 

icipants from the three datasets. 

.2. Image preprocessing 

Raw T1w MRIs were quality checked for motion, image ar- 

ifacts, or restricted field-of-view. Images passing this quality 

heck (QC) were corrected for magnetic field inhomogeneity 

 Tustison et al., 2010 ). A robust multi-atlas label fusion-based 

ethod, MUSE ( Doshi et al., 2016 ), was applied for tissue segmen- 

ation of the brain. Voxel-wise regional volumetric maps (RAVENS) 

 Davatzikos et al., 2001 ) were generated for grey matter (GM) tis- 

ues by registering skull-stripped images to a population-based 

emplate residing in the MNI-space using a deformable registration 

ethod ( Ou et al., 2011 ). Another QC procedure was performed 

o control the quality of the images further. Specifically, the im- 

ges were first checked by manually evaluating for pipeline failures 

e.g., poor brain extraction, tissue segmentation, and registration 

rrors). Furthermore, a second-step automated procedure automat- 

cally flagged images based on outlying values of quantified metrics 

i.e., ROI values), and those flagged images were re-evaluated. 

. Experiments and results 

We first validated the proposed model using semi-simulated 

ata in which we knew the ground truth for the number of clus- 

ers ( k ) and subtype membership assignment. In this setting, we 

uantitatively assessed how several key components influenced the 

lustering performance and compared our method’s performance 

o other common clustering approaches. Finally, we applied MAGIC 

o real clinical datasets for dissecting the heterogeneity of AD plus 

CI and SCZ. In our experiments, different nuisance variables (i.e., 

ge and sex or site) were controlled with a linear regression model 

n MAGIC for the multi-scale features. Specifically, the beta was es- 

imated on healthy control subjects and then applied to all popu- 

ations. 

http://www.ukbiobank.ac.uk
https://www.adni-info.org/
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Table 1 

Summary of participant demographics for UKBB, ADNI, and PHENOM datasets. Values 

for age are presented as mean ± SD [range]. M: male, F: female. 

Study Diagnosis Subjects Age Gender 

UKBB CN 4403 63.21 ±7.41 [45, 80] 2068 M / 2335 F 

ADNI CN 541 74.02 ±5.79 [56, 90] 253 M / 288 F 

MCI 848 73.15 ±7.56 [54, 89] 504 M / 344 F 

AD 339 74.78 ±7.87 [55, 90] 186 M / 153 F 

PHENOM CN 583 32.20 ±11.98 [13, 86] 302 M / 281 F 

SCZ 583 33.70 ±11.04 [14, 78] 392 M / 191 F 
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Table 2 

Summary of the original semi-simulated experiments. The number of subjects for 

each group is shown in parentheses. ASL: atrophy strength level; k : the number of 

clusters. Sub: Subtype. 

Experiment Subtype and sample size 

k = 2 & ASL = 0.1 CN (2201), Sub1 (1101), Sub2 (1101) 

k = 2 & ASL = 0.2 CN (2201), Sub1 (1101), Sub2 (1101) 

k = 2 & ASL = 0.3 CN (2201), Sub1 (1101), Sub2 (1101) 

k = 3 & ASL = 0.1 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k = 3 & ASL = 0.2 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k = 3 & ASL = 0.3 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100) 

k = 4 & ASL = 0.1 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k = 4 & ASL = 0.2 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 

k = 4 & ASL = 0.3 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880) 
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.1. Evaluation strategy 

We adopted a cross-validation (CV) procedure with repeated 

nd stratified random splits for 100 repetitions to determine the 

ppropriate number of clusters. Specifically, during each repetition, 

0% of the data was for training. The “optimal” number of clusters 

as guided by the clustering stability across the 100 repetitions. 

he Adjusted Rand index (ARI) was used for that purpose, which 

e denoted as ARIs during CV (ARI_CV). Moreover, for simulation 

xperiments, where the ground truth for subtype membership was 

nown, ARI was also used to quantify the clustering performance, 

eferred to as ARIs for ground truth (ARI_GT). 

After obtaining the assignment of subtype membership, we 

erformed voxel-wise group comparisons for RAVENS GM maps 

etween each subtype with CNs using the 3dttest ++ program 

 Cox et al., 2017 ) in AFNI ( Cox, 1996 ) to detect the distinct neu-

oanatomical patterns of the corresponding subtypes. The two- 

ample t -test T-value map of AFNI was further converted to a P- 

alue map applying correction for multiple comparisons with the 

enjamini-Hochberg procedure. Effect sizes can for some purposes 

e more useful than P-values, since P-values are highly dependent 

n the sample size (Sullivan and Feinn, 2012) . Thus, we calculated 

he effect size, Cohen’s f 2 ( Selya et al., 2012 ), for voxels that are

ignificantly different between subtypes after adjusting the con- 

ounding covariates (i.e., age and sex). We chose Cohen’s f 2 over 

ohen’s d because the formulation of Cohen’s f 2 takes into ac- 

ount the confounding covariates in a general linear model set-up, 

hereas Cohen’s d is simply the mean difference of two groups 

ivided by the pooled standard deviation. We present the voxel- 

ise effect size maps to delineate the subtypes’ neuroanatomical 

atterns for all experiments. For reference, Cohen’s f 2 ≥ 0.02, ≥
.15, and ≥ 0.35 represent small, medium, and large effect sizes, 

espectively ( Selya et al., 2012 ). 

.2. Experiments using UKBB semi-simulated data 

The UKBB RAVENS GM maps were used to generate semi- 

imulated data. We first divided all CN subjects ( N = 4403) into 

re-defined number of splits. Part of the splits was regarded as 

he true CN, and the remainder (i.e., pseudo-PT) was further di- 

ided into another number of splits for subtype simulations. The 

ample size of each subtype was balanced. Brain atrophy was then 

mposed onto RAVENS maps of each of the subtypes within dif- 

erent patterns. To simplify the simulation, we assume that pat- 

erns across the k subtypes are orthogonal with each other (we 

urther tested the influence of overlapping patterns between sub- 

ypes). These regions were chosen a priori based on the segmen- 

ation image of the template image in the MNI space. Different 

hoices for the number of subtypes ( k ) and atrophy strength level 

ASL) were tested. For instance, for experiments with k = 2 and 

SL = 0.1, voxel intensity values inside the two pre-defined patterns 

ere reduced by 10% compared to their original values. More- 

ver, the ASL varied by ±2% across images to add randomness. 

n total, nine experiments were performed and summarized in 
6 
able 2 . The ground truth of the pre-defined atrophy patterns of 

ach subtype is shown in Fig. 3 (i.e., the first column). During 

imulation, we ensured that the subtype groups did not signif- 

cantly differ in sex and age. Of note, the UKBB subjects were 

rimarily diagnosed as neurodegenerative-speaking healthy con- 

rols, but they were also self-reported for various comorbidities 

see https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202 ). There- 

ore, age or comorbidity-related heterogeneity already exist in the 

riginal data. This setting is more realistic because heterogeneity 

aused by brain aging and pathologies often intertwine with each 

ther. 

In sum, we sought to compare MAGIC’s clustering perfor- 

ance to other unsupervised or semi-supervised clustering meth- 

ds. Since the influence of confounds on clustering performance 

ay vary under different conditions, our second goal was to test 

nder what conditions MAGIC can discover i) the true membership 

f the subtypes, ii) the true number of clusters ( k ); iii) its simu-

ated atrophy patterns, and iv) its severity of the abnormal patterns 

i.e., voxel-wise effect size map). 

.2.1. MAGIC discovers the correct number of clusters and 

orresponding simulated neuroanatomical patterns 

MAGIC was able to discover the correct number of clusters for 

he following experiments: k = 2 & ASL = 0.1, 0.2 or 0.3 ( Fig. 2 A, B

nd C), k = 3 & ASL = 0.2 ( Fig. 2 E) or ASL = 0.3 ( Fig. 2 F), and k = 4 &

SL = 0.3 ( Fig. 2 I). For other experiments, MAGIC failed to find the

rue k ( Fig. 2 D, G, and H), indicating that in the presence of high

eterogeneity ( K > 2 or 3) and very subtle disease effect (10% −20%), 

he algorithm reaches a detection threshold. 

Voxel-wise effect size maps were generated to demonstrate 

hether MAGIC can find the ground truth of neuroanatomical atro- 

hy patterns of subtypes. Of note, the actual neuroanatomical pat- 

erns revealed by the voxel-wise maps include heterogeneity due 

o both the simulation effects (i.e., disease effect) and normative 

rain aging, e.g., those voxels without any simulation in the P- 

alue mask map ( Fig. 3 ). To further support the normative brain 

ging heterogeneity, we derived the voxel-wise effect size map 

or the original images (without any simulation) of subjects from 

ub1 and healthy control groups in Fig. 3 A (supplementary eFig- 

https://paperpile.com/c/6kyy7l/0sY2
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202
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Fig. 2. MAGIC finds the ground truth of the number of clusters ( k ) when the clustering conditions are favorable, i.e., higher ASL or lower k . The “optimal” k was determined 

by ARI_CV. A) k = 2 & ASL = 0.1; B) k = 2 & ASL = 0.2; C) k = 2 & ASL = 0.3; D) k = 3 & ASL = 0.1; E) k = 3 & ASL = 0.2; F) k = 3 & ASL = 0.3; G) k = 4 & ASL = 0.1; H) k = 4 & 

ASL = 0.2; I) k = 4 & ASL = 0.3. The bold lines represent the ground truth of k for each experiment. 
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re 1), which showed specific abnormality patterns with small ef- 

ect sizes. Moreover, we quantitatively evaluated how well MAGIC 

an recover the simulated voxels. For that purpose, we proposed a 

imulation accuracy metric (ACC): the proportion of the number of 

oxels that passed the statistical significance in the P-value mask 

aps over the number of voxels in the ground truth mask that was 

asked by the population-based RAVENS GM tissue mask ( Fig. 3 ). 

In short, MAGIC was able to find the ground truth for all exper- 

ments, except for k = 4 & ASL = 0.1 ( Fig. 3 G), in which small effects

Cohen’s f 2 < 0.06) were detected in subcortical structures for all 

our subtypes. The voxels showing the largest effect sizes discov- 

red by the effect size map were from the simulated regions. Fur- 

hermore, the P-value mask maps quantitatively showed that most 

f the simulated voxels could be detected by MAGIC ( Fig. 3 ). Lastly,

he effect size of the subtype patterns increased with increasing 

SL (refer to the effect sizes in each row of Fig. 3 ). 

.2.2. Comparison of magic to other clustering methods 

We compared MAGIC to other commonly used unsupervised 

lustering methods and HYDRA. Specifically, K-means is a vector 

uantification method that aims to partition the patient popula- 

ion into k clusters in which each participant belongs to the cluster 

ith the nearest mean ( Hartigan and Wong, 1979 ). GMM performs 

lustering by assuming that there are specific numbers of Gaus- 

ian distributions in patients, and each of these distributions be- 
s

7 
ongs to one cluster ( McLachlan and Basford, 1988 ). NMF aims to 

actorize the input matrix into two low-rank matrices with non- 

egative values. Intrinsically, the loading coefficient matrix con- 

eys the clustering membership assignment ( Lee and Seung, 2001 ). 

astly, the agglomerative hierarchical clustering (AHC) method is 

nother unsupervised clustering method that seeks to build a hi- 

rarchy of clusters in a “bottom-up” fashion ( Day and Edelsbrun- 

er, 1984 ). Moreover, we fit the unsupervised methods and HYDRA 

ith i) single-scale features (dotted curve lines in Fig. 4 ) and ii) 

ulti-scale features (solid straight lines in Fig. 4 ) together for com- 

rehensive comparisons, since MAGIC always take multi-scale fea- 

ures. 

As displayed in Fig. 4 , MAGIC obtained slightly better cluster- 

ng results than HYDRA and substantially outperformed all other 

nsupervised clustering methods (i.e., K-means, GMM, NMF, and 

gglomerative hierarchical clustering). Specifically, MAGIC obtained 

igher ARI_GTs for the following experiments: k = 2 & ASL = 0.1 

 Fig. 4 A), k = 3 & ASL = 0.1 or 0.2 or 0.3 ( Fig. 4 D, E and F), and

 = 4 & ASL = 0.2 or 0.3 ( Fig. 4 H and I). All methods failed in

lustering for experiment k = 4 & ASL = 0.1 ( Fig. 4 G). Furthermore,

tting all multi-scale features for HYDRA did not always perform 

etter than the single-scale features and performed worse than 

AGIC. Of note, fitting all multi-scales features (i.e., 910 features) 

or HYDRA took a much longer time to converge the model than 

ingle-scale HYDRA or MAGIC. For all experiments, we showed the 
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Fig. 3. MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering conditions are favorable, i.e., higher ASL or lower k . Neuroanatomical 

patterns are displayed using effect size maps based on voxel-wise group comparisons between CN and subtypes. Positive values denote brain atrophy (CN > Sub), while 

negative values correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the subtypes pattern is presented with a binary mask (white) for each k in 

the first column. Moreover, we proposed a simulation accuracy metric (ACC): the proportion of the number of voxels that passed the statistical significance in the P-value 

mask maps over the number of voxels in the ground truth mask that was masked by the population-based RAVENS GM tissue mask. A) k = 2 & ASL = 0.1, Sub1: ACC = 0.77, 

Sub2: ACC = 0.81; B) k = 2 & ASL = 0.2, Sub1: ACC = 0.78, Sub2: ACC = 0.84; C) k = 2 & ASL = 0.3, Sub1: ACC = 0.78, Sub2: ACC = 0.89; D) k = 3 & ASL = 0.1, Sub1: ACC = 0.67, Sub2: 

ACC = 0.70, Sub3: ACC = 0.82; E) k = 3 & ASL = 0.2, Sub1: ACC = 0.73, Sub2: ACC = 0.74, Sub3: ACC = 0.87; F) k = 3 & ASL = 0.3, Sub1: ACC = 0.76, Sub2: ACC = 0.72, Sub3: ACC = 0.89; 

G) k = 4 & ASL = 0.1, Sub1: ACC = 0.55, Sub2: ACC = 0.54, Sub3: ACC = 0.66, Sub4: ACC = 0.59; H) k = 4 & ASL = 0.2, Sub1: ACC = 0.66, Sub2: ACC = 0.64, Sub3: ACC = 0.65, Sub4: 

ACC = 0.77; I) k = 4 & ASL = 0.3, Sub1: ACC = 0.63, Sub2: ACC = 0.66, Sub3: ACC = 0.64, Sub4: ACC = 0.79. For reference, Cohen’s f 2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, 

medium, and large effect sizes, respectively. 
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onsensus clustering performance and the standard deviation of 

he clustering performance across the 100 repetitions ( Fig. 4 ). We 

ecided not to report P-values because the “probability” of a false 

ositive in this cross-validation scenario tends to be inflated. Af- 

er all, no unbiased estimator of the correlation between the re- 

ults obtained on the different repetitions exists ( Nadeau and Ben- 

io, 2003 ). 

.2.3. Influence of the number of clusters 

When the number of clusters k increased, MAGIC’s clustering 

erformance gradually decreased (i.e., each column in Fig. 4 repre- 

ents the three experiments with the same ASL), except for exper- 

ments k = 4 & ASL = 0.3. For ASL = 0.1, the ARI_GTs are 0.610, 0.368

nd 0.091 for k = 2, 3 and 4, respectively. For ASL = 0.2, the ARI_GT

ecreased from 0.960 to 0.934 and to 0.713 for k = 2, 3 and 4, re-

pectively. For ASL = 0.3, the ARI_GTs are 0.994, 0.995 and 0.966 for 

 = 2, 3 and 4, respectively. 
8 
.2.4. Influence of atrophy strength levels 

With the increase of ASL, MAGIC’s clustering performance grad- 

ally improved (i.e., each row in Fig. 4 represents the three experi- 

ents with the same k ). For k = 2, the ARI_GTs are 0.610, 0.960

nd 0.994 for ASL = 0.1, 0.2 and 0.3, respectively. For k = 3, the

RI_GT increased from 0.368 to 0.934 and to 0.995 for ASL = 0.1, 

.2 and 0.3, respectively. For k = 4, the ARI_GTs are 0.091, 0.713 

nd 0.966 for ASL = 0.1, 0.2 and 0.3, respectively. 

We visualized the subtypes/clusters in 2D space for all experi- 

ents using multidimensional scaling ( Cox and Cox, 2008 ) ( Fig. 5 ).

ith the increase of ASL at a given k , the clusters become more 

eparable (i.e., each row in Fig. 5 represents the three experiments 

ith the same k ). 

.2.5. Influence of overlapping atrophy patterns 

We generated overlapping atrophy patterns based on the orig- 

nal experiments for each k . For k = 2, Sub2 had subcortical atro- 

hy in the initial experiments ( Fig. 3 ), and we additionally sim- 
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Fig. 4. MAGIC outperforms other common clustering methods. Comparisons of clustering performance between different methods: MAGIC, HYDRA, K-means, GMM, NMF, 

and agglomerative hierarchical clustering (AHC) ( M = 40 to 100 with a step as 5). The solid straight lines show clustering results for models that take multi-scale features 

as input and are drawn over all M s only for visualization purposes. The dotted curve lines represent clustering results for models that take single-scale features as input. A) 

k = 2 & ASL = 0.1; B) k = 2 & ASL = 0.2; C) k = 2 & ASL = 0.3; D) k = 3 & ASL = 0.1; E) k = 3 & ASL = 0.2; F) k = 3 & ASL = 0.3; G) k = 4 & ASL = 0.1; H) k = 4 & ASL = 0.2; I) 

k = 4 & ASL = 0.3. We report the final consensus clustering performance (ARI_GT) for all models, together with the standard deviation of the 100-repetition clustering results 

during CV. For models using single-scale features, we show the results with the single-scale obtaining the highest ARI_GT. 

Table 3 

Comparison of the original clustering performance (left column) to the influence of overlapping atrophy 

patterns (middle column) and the larger brain volume (right column). Compared to the original exper- 

iments, overlapping atrophy patterns result in lower clustering performance, while larger brain volume 

shows no extensive clustering performance effects. 

Experiment Original experiments Overlapping atrophy patterns Larger brain volume 

k = 2 & ASL = 0.1 0.610 0.501 0.562 

k = 2 & ASL = 0.2 0.960 0.946 0.947 

k = 2 & ASL = 0.3 0.962 0.962 0.962 

k = 3 & ASL = 0.1 0.368 0.281 0.393 

k = 3 & ASL = 0.2 0.934 0.879 0.926 

k = 3 & ASL = 0.3 0.995 0.977 0.976 

k = 4 & ASL = 0.1 0.091 0.111 0.210 

k = 4 & ASL = 0.2 0.713 0.628 0.731 

k = 4 & ASL = 0.3 0.966 0.967 0.965 
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lated parietal atrophy. Similarly, for k = 3 and 4, global corti- 

al atrophy was imposed within Sub1 (frontal atrophy subtype in 

he original experiments) and Sub3 (temporal atrophy subtype in 

he initial experiments) members, respectively. The ground truth of 

verlapping neuroanatomical patterns is detailed in supplementary 

Figure 2. 

As shown in Table 3 , MAGIC obtained inferior clustering per- 

ormance compared to the original experiments for i) k = 2 & 

SL = 0.1, ii) k = 3 & ASL = 0.1, iii) k = 3 & ASL = 0.2 and iv) k = 4
9 
 ASL = 0.2, and comparable results for experiments with ASL = 0.3. 

he results for the ARI_CV, voxel-wise effect size maps and the 2D 

isualization of subtypes are presented in supplementary eFigure 

, 3 and 4, respectively. 

.2.6. Influence of larger regional brain volumes 

Instead of simulating brain atrophy as in the original experi- 

ents ( Fig. 3 ), we introduced larger brain volumes by increasing 

he voxel’s intensity value inside the pre-defined patterns for Sub2 
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Fig. 5. Clusters found by MAGIC become more distinguishable when the clustering conditions are favorable, i.e., higher ASL or lower k . The clusters were projected into 

2D space for visualization. Dimension 1 and Dimension 2 represent the two components projected by multidimensional scaling methods. A) k = 2 & ASL = 0.1; B) k = 2 & 

ASL = 0.2; C) k = 2 & ASL = 0.3; D) k = 3 & ASL = 0.1; E) k = 3 & ASL = 0.2; F) k = 3 & ASL = 0.3; G) k = 4 & ASL = 0.1; H) k = 4 & ASL = 0.2; I) k = 4 & ASL = 0.3. 
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embers for experiments k = 2, Sub3 members for experiments 

 = 3 and Sub4 members for experiments k = 4. The simulated 

euroanatomical patterns are detailed in supplementary eFigure 5. 

As shown in Table 3 , MAGIC obtained comparable clustering 

erformance to all settings’ original experiments. The results for 

he ARI_CV, voxel-wise effect size maps, and the 2D visualization 

f subtypes are presented in supplementary eFigure 5, 6, and 7, 

espectively. 

.2.7. Influence of data imbalance 

We first evaluated the influence of data imbalance for CN vs. 

ubtypes. The imbalance ratios were achieved by randomly sub- 

ampling from the groups of subtypes. As shown in Fig. 6 A, B, and

, clustering performance considerably increased when the groups 

ecame more balanced. With the highest imbalance ratio (8:1), all 

xperiments obtained the lowest ARI_GTs. Generally, the ratios of 

:1 performed on par with the ratios of 1:1 and 1:2. 

We then evaluated the influence of data imbalance among sub- 

ypes by assuming that CN and PT (sum of all subtypes) were bal- 

nced ( Fig. 6 D, E, and F). Similarly, clustering performance con- 

iderably increased with more balanced data. On the other hand, 

hen ASL is large (i.e., 0.3), data imbalance showed a limited im- 

act on clustering performance (e.g., Fig. 6 D and E). 
10 
.2.8. Influence of sample size 

The influence of the sample size on clustering performance was 

ssessed ( Fig. 6 G, H and I). For each experiment, MAGIC was run 

ith data ranging from 10% to 100% of the sample size by keeping 

he original group ratios unchanged (i.e., CN vs. Sub1 vs. Sub2 vs 

). 

Generally, clustering performance improved with the increas- 

ng sample size. For experiments k = 2 & ASL = 0.3 and k = 3 &

SL = 0.3, clustering performance was almost perfect at all differ- 

nt sample size choices. For experiment k = 4 & ASL = 0.1 ( Fig. 6 I),

AGIC obtained poor clustering performance. 

.3. Experiments using Alzheimer’s disease data 

When applied to ADNI data, ARI_CV was the highest at k = 2 

 < 0.5), compared to other values of k ( Fig. 7 A). For k = 2, The ef-

ect size maps revealed two distinct neuroanatomical patterns: i) 

ub1 ( N = 396) showed relatively normal brain anatomy, except 

or focalized brain atrophy in subcortical regions. In contrast, Sub2 

 N = 791) had diffuse atrophy with the largest effect size (Co- 

en’s f 2 = 0.45) in the hippocampus, amygdala, and temporal re- 

ions ( Fig. 7 B). For k = 3, the three subtypes all presented diffuse

rain atrophy ( Fig. 7 C). For k = 4, Sub1 ( N = 363) showed only fo-
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Fig. 6. The influence of different ratios of imbalanced data between CN vs. subtypes is presented in Fig. A, B, and C, among subtypes in Fig. D, E and F. The influence of 

sample size is displayed in Fig. G, H, and I. A) influence of data imbalance between CN and subtypes for k = 2; B) influence of data imbalance between CN and subtypes for 

k = 3; C) influence of data imbalance between CN and subtypes for k = 4; D) influence of data imbalance among subtypes for k = 2. Clustering performance improves with 

the increase of the sample size. E) influence of data imbalance among subtypes for k = 3; F) influence of data imbalance among subtypes for k = 4; G) influence of sample 

sizes for k = 2; H) influence of sample sizes for k = 3; I) influence of sample sizes for k = 4. 
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al atrophy in temporal regions. Sub2 ( N = 416) is the typical AD 

attern showing whole-brain atrophy and most severe atrophy in 

emporal and hippocampus regions. Sub3 ( N = 210) showed atyp- 

cal AD patterns without affecting the hippocampus and temporal 

obes ( Fig. 7 D). Sub4 ( N = 198) preserved relatively normal brain

natomy. Large effect sizes were detected in all subtypes but the 

euroanatomical patterns overlapped and were focalized. 

The CV procedure obtained consistently higher ARI_CV for 

 = 2. It generally divides the patients into mild and severe at- 

ophied groups, which might not be clinically interesting. Using 

ifferent semi-supervised clustering techniques but similar popu- 

ations (AD and MCI from ADNI), we previously found four dis- 

inct subtypes ( Dong et al., 2016b ; Yang et al., 2021 ). Moreover,

hese subtypes have been previously reported in the works from 

ther groups (see the Discussion section). To sum up, the results 

f ARI_CV, together with our semi-simulated experiments ( Fig. 2 D), 

ight indicate that the CV procedure does not detect the true k 

ue to unfavorable clustering conditions (e.g., the focalized effects 
11 
r small sample size). Taken all together, we focused on k = 4 for 

ubsequent ADNI analyses. 

To support our claims, we compared the clinical characteristics 

f the four subtypes ( Fig. 7 E). Details are presented in supplemen- 

ary eTable 1 for statistics and data availability. In general, Sub2 

howed the highest TTau (127.62) and PTau (45.16), the highest 

poE Ɛ4 carrier rate (68%), and the most deficient cognitive per- 

ormance across the four domains, whereas Sub4 showed the op- 

osite trend and represented a more normal-like clinical and neu- 

oimaging profile. 

We demonstrated the utility of MAGIC for a binary classification 

ask (541 CN vs 339 AD) using ADNI data and compared it to HY- 

RA and a linear SVM. We adopted the same cross-validation (CV) 

rocedure as MAGIC for all models for a fair comparison. The con- 

tructed polytope was used for classification with MAGIC and HY- 

RA. MAGIC (0.85 ±0.03) obtained slightly better performance than 

YDRA (0.84 ±0.04) and a linear SVM (0.82 ±0.04) (supplementary 

Figure 8). 



J. Wen, E. Varol, A. Sotiras et al. Medical Image Analysis 75 (2022) 102304 

Fig. 7. Applying MAGIC to AD and MCI patients of ADNI. A) Cross-validation for choosing the “optimal” k . In general, the ARI_CV is low for all different choices of k and 

with the highest for k = 2. B) Voxel-wise effect size (Cohen’s f 2) maps for the neuroanatomical patterns between the two subtypes and CN. C) Effect size maps for the 

three subtypes and CN neuroanatomical patterns. D) Effect size maps for the neuroanatomical patterns between the four subtypes and CN. E) Clinical characteristics for the 

four subtypes and CN. Mann–Whitney–Wilcoxon test was used for continuous variables and the Chi-square test of independence for categorical variables. The significance 

threshold is 0.05 and ∗ denotes statistical significance. All continuous variables were normalized for visualization purposes. We harmonized the low-dimensional components 

using the Combat-GAM model ( Pomponio et al., 2019 ) to mitigate the site effect. 
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.4. Experiments using schizophrenia data 

We then applied MAGIC to PHENOM data. For model selection, 

he CV procedure showed consistently higher ARI_CV values for 

 = 2 (ARI_CV > 0.6) compared to other resolutions ( Fig. 8 A). For

 = 2, the effect size maps revealed two distinct neuroanatom- 

cal patterns: Sub1 ( N = 383) showed widespread brain atrophy 

ompared to CN, with the highest effect size (Cohen’s f 2 = 0.35) in

he thalamus and insula. In contrast, Sub2 ( N = 200) exhibited no 

rain atrophy but larger brain volumes than CN in the pallidum 

nd putamen ( Fig. 8 B). For k = 3, the first two subtypes [Sub1

 N = 302) and Sub2 ( N = 185)] persisted, and Sub3 ( N = 96)

howed atrophy in frontal lobe and insula regions ( Fig. 8 C). For 

 = 4, Sub4 ( N = 109) showed diffuse atrophy patterns with a 

mall effect size (Cohen’s f 2 < 0.07) ( Fig. 8 D). 

For k = 2, MAGIC validated the two subtypes revealed in our 

revious work, in which HYDRA and a smaller sample size (364 

N and 307 SCZ) were used to derive the two subtypes ( Chand 

t al., 2020 ). Subsequently, we compared the clinical characteris- 

ics of the two subtypes ( Fig. 8 E). Details are presented in supple-

entary eTable 2. Sub2 showed better performance in the global 

ssessment of functioning (GAF) scale. 

. Discussion 

.1. Synopsis 

This paper presents MAGIC, a novel multi-scale semi-supervised 

lustering method for dissecting disease heterogeneity. The pro- 

osed method seamlessly integrates multi-scale representation 

earning and semi-supervised clustering in a coherent frame- 

ork via a double-cyclic optimization procedure to yield scale- 

gnostic delineation of heterogeneous disease patterns. In contrast 

o existing unsupervised approaches presented in ( Ezzati et al., 

020 ; Jeon et al., 2019 ; Jung et al., 2016 ; Lubeiro et al., 2016 ;

ettiksimmons et al., 2014 ; Ota et al., 2016 ; Pan et al., 2020 ;

ark et al., 2017 ; Planchuelo-Gómez et al., 2020 ; Poulakis et al., 

020 , 2018 ; Sugihara et al., 2016 ; Ten Kate et al., 2018 ), MAGIC

s a semi-supervised approach, leveraging the patient-control di- 

hotomy to drive subtypes that reflect distinct pathological pro- 

esses. In contrast to the existing state-of-the-art semi-supervised 

lustering method (i.e., HYDRA), MAGIC can accurately delin- 

ate effect patterns that are both global and focal, thanks to its 

ulti-scale optimization routine. The validity of MAGIC is demon- 

trated in semi-simulated experiments. We show MAGIC’s abil- 

ty to discern disease subtypes and their neuroanatomical pat- 

erns under various simulated scenarios constructed by varying 

he ASL, sample size, and sample imbalance, respectively. More 

mportantly, we showcased that the results of the analyses on 

DNI and PHENOM datasets and the semi-simulated experiments 

xquisitely echo each other. Two clinically distinct subtypes of 

CZ patients are established with high confidence, corresponding 

o the simulation where the clustering conditions are favorable. 

n contrast, the four subtypes in AD and MCI are less convinc- 

ng, reflecting the simulation where the conditions are hard to 

isentangle. 

.2. MAGIC outperforms comparable heterogeneity analysis methods 

Concerning clustering performance, MAGIC outperformed com- 

eting methods. On the one hand, compared to HYDRA, the mi- 

or gain in clustering accuracy in MAGIC is likely driven by multi- 

cale features that can better explain the variance due to het- 

rogeneity. We hypothesize that the opNMF multi-scale compo- 

ents accurately reflect multi-scale brain organization that has 
13 
reviously been demonstrated in network analysis ( Betzel and 

assett, 2017 ), brain modeling ( Schirner et al., 2018 ), and sig- 

al processing ( Starck et al., 1998 ) in the literature. Furthermore, 

ulti-scale learning has shown great potential in medical imag- 

ng for different tasks, such as segmentation ( Doshi et al., 2016 ; 

amnitsas et al., 2017 ) or classification ( Cui et al., 2016 ; Hu et al.,

016 ). On the other hand, MAGIC substantially outperforms unsu- 

ervised clustering methods. Since unsupervised clustering meth- 

ds directly partition patient samples into clusters based on sim- 

larity/dissimilarity or distance ( Altman and Krzywinski, 2017 ), 

hey may be more likely driven by confounding factors such as 

rain size, age, and sex instead of pathology-related variations, 

hich is partially addressed by MAGIC. Namely, MAGIC can de- 

ive pathology-driven subtypes in a multi-scale manner by lever- 

ging the reference label (i.e., CN) and the fuzzy patient labels 

i.e., PT). 

.3. Under what conditions does MAGIC succeed or fail? 

The critical yet challenging choice to be made in all algorithms 

elated to clustering is to choose the appropriate number of clus- 

ers ( Climescu-Haulica, 2007 ; Fu and Perry, 2020 ; Mirkin, 2011 ), 

ince all clustering methods find patterns in data - whether they 

re real or not ( Altman and Krzywinski, 2017 ). In addition to pro-

iding a new clustering method, we provided guidelines to these 

eterogeneity analysis algorithms’ practitioners. Specifically, our 

xperiments shed light on selecting the number of clusters and 

rovide criteria when the clustering analysis is reliable and when 

t needs to be approached with caution. In general, we suggest per- 

orming model selection using a cross-validation strategy based on 

lustering stability. In our experiments, ARI reliably recovered the 

round truth number of clusters when the ASL and sample size 

ere large and data was reasonably balanced. However, one should 

ote that a lower number of clusters intrinsically gives more stable 

esults (i.e., higher ARI_CV). In such cases, in actual clinical appli- 

ations, other insights may be required to support further the sub- 

ypes found, such as the effect size map or prior clinical knowl- 

dge. 

Different choices of the key components (e.g., sample size or 

ata imbalance) have detrimental or positive influences on cluster- 

ng. With the increase of the complexity of clustering (e.g., increas- 

ng the number of clusters or decreasing ASL), MAGIC’s cluster- 

ng performance degrades gradually. This is to be expected as the 

oundaries between clusters become increasingly blurred and in- 

ivisible. Moreover, imbalanced data have adverse effects on clus- 

ering results. This is in line with previous findings ( Dubey et al., 

014 ; Samper-González et al., 2018 ). The authors found that bal- 

nced data obtained better classification results than the im- 

alanced using T1w MRI from ADNI. Note that MAGIC essen- 

ially performs clustering and supervised classification simultane- 

usly. Unsurprisingly, increased sample size leads to better clus- 

ering performance, consistent with the findings from previous 

tudies ( Abdulkadir et al., 2011 ; Chu et al., 2011 ; Franke et al.,

010 ; Samper-González et al., 2018 ; Schulz et al., 2020b ). The 

ule of thumb in semi-supervised clustering is to collect mod- 

rately balanced data and large samples in practice. Finally, in- 

tead of larger brain patterns, adding overlapping patterns made 

t more difficult to disentangle these effects. The former sit- 

ation is more commonly present in practice. In these cases, 

arger sample cohorts may be needed to unravel the overlapping 

eterogeneity. 

Our semi-simulated experiments are of great value for assess- 

ng clustering results. They enable us to understand potential false- 

ositive results. Namely, suppose the sample size, ARI_CV, and/or 

he effect sizes are low. In that case, none of the existing methods 
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Fig. 8. Applying MAGIC to schizophrenia patients from PHENOM. A) Cross-validation for choosing the “optimal” k . B) Voxel-wise effect size maps for the neuroanatomical 

patterns between the 2 subtypes and CN. C) Effect size maps for the neuroanatomical patterns between the three subtypes and CN. D) Effect size maps for the neuroanatom- 

ical patterns between the four subtypes and CN. E) Clinical characteristics for the two subtypes. Mann–Whitney–Wilcoxon test was used for continuous. The significance 

threshold is 0.05 and ∗ denotes statistical significance. All continuous variables were normalized for visualization purposes. GAF: global assessment of functioning. We 

harmonized the low-dimensional components using the Combat-GAM model ( Pomponio et al., 2019 ) to mitigate the site effect. Disease onset: age at onset. 
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ay uncover the true heterogeneity or may reveal a lower number 

f subtypes than what is present. 

.4. Subtypes in AD and MCI 

Applying the proposed method to structural imaging data from 

DNI indicates that the current sample size or technique can- 

ot detect the “true” number of clusters. This result is consistent 

ith the semi-simulated experiment, in which the resolution of 

 = 2 intrinsically tends to be higher when the clustering condi- 

ions are less favorable ( Fig. 2 D). In such cases, clinical priors and

xternal validation of the claimed subtypes are highly demanded. 

urthermore, neurodegenerative diseases are highly heterogeneous, 

nd the neuroanatomical patterns might be highly overlapping. 

or instance, previous autopsy studies ( DeTure and Dickson, 2019 ; 

erl, 2010 ) have shown that pure AD cases are relatively infre- 

uent, as AD and other comorbid conditions (e.g., vascular disease 

r Lewy body disease) often co-exist ( Rabinovici et al., 2016 ). 

Among the four subtypes, Sub4 displays normal brain anatomy 

 Fig. 7 D). This was supported by the distribution of AD/MCI. Sub4 

164 MCI & 34 AD) has the highest proportion of MCI. The normal 

natomy subtype has been confirmed in previous works both from 

emi-supervised and unsupervised methods ( Dong et al., 2016b ; 

zzati et al., 2020 ; Jung et al., 2016 ; Nettiksimmons et al., 2014 ;

ta et al., 2016 ; Poulakis et al., 2020 , 2018 ; Ten Kate et al., 2018 ;

ang et al., 2020 ). Sub2 showed typical AD-like neuroanatomi- 

al patterns with diffuse atrophy over the whole brain, with the 

argest effect size in the hippocampus and medial temporal lobe. 

hose affected regions have been widely reported as hallmarks 

f AD in case-control studies ( Hanyu et al., 1998 ; Müller et al.,

005 ; Varghese et al., 2013 ) and have been confirmed in previ- 

us clustering literature ( Dong et al., 2016b ; Nettiksimmons et al., 

014 ; Noh et al., 2014 ; Poulakis et al., 2018 ; Ten Kate et al., 2018 ;

arol et al., 2017 ; Yang et al., 2020 ; Young et al., 2018 ). Conversely,

ub3 showed an atypical widespread atrophy pattern that did 

ot include the hippocampus and the temporal lobe ( Dong et al., 

016b ; Poulakis et al., 2018 ; Yang et al., 2020 ). 

The clinical characteristics of the four subtypes are in line with 

heir neuroanatomical patterns ( Fig. 7 E). The normal-like subtype 

ad the lowest level with respect to CSF amyloid-b 1–42, CSF- 

au levels, most minor cognitive impairment. Moreover, despite 

he methodological differences across studies, the resulting sub- 

ypes’ agreement emphasizes that AD should be considered a neu- 

oanatomically heterogeneous disease. These distinct imaging sig- 

atures or dimensions may elucidate different brain mechanisms 

nd pathways leading to AD and eventually contribute to the re- 

nement of the “N” dimension in the “A/T/N” system ( Jack et al., 

016 ). 

.5. Subtypes in schizophrenia 

MAGIC discovered two highly reproducible and neuroanatomi- 

ally distinct subtypes in schizophrenia patients. MAGIC obtained 

onsistently higher clustering stability for k = 2 (ARI_CV > 0.6) and 

arge effect size for subtypes’ neuroanatomical patterns. Further- 

ore, these two subtypes were retained for a higher resolution 

f the number of subtypes ( k > 2). Sub1’s neuroanatomical patterns 

re in line with previous case-control literature, demonstrating 

idespread GM atrophy ( Okada et al., 2016 ; Rozycki et al., 2018 ;

an Erp et al., 2016 ). In contrast, Sub2 showing larger brain volume 

n basal ganglia corresponds to previous works reporting subcorti- 

al GM increases ( Brugger and Howes, 2017 ; Okada et al., 2016 ,

016; Zhang et al., 2015b ). Moreover, Sub2 showed less functional 

isability (higher GAF). The two subtypes found by MAGIC rein- 

orce the need for the refinement of the neuroanatomical dimen- 

ions in schizophrenia. 
15 
.6. Potential and challenges 

The application of clustering methods to neuroimaging data has 

ecently drawn significant attention and has led to several key 

ublications in recent years. Herein we demonstrated MAGIC’s po- 

ential for dissecting the neuroanatomical heterogeneity of brain 

iseases, indicating that the current “all-in-one-bucket” diagnostic 

riteria may not be appropriate for certain neurodegenerative and 

europsychiatric disorders. On the other hand, clustering methods 

lways end up with clusters, even if there are no natural clus- 

ers in the data ( Altman and Krzywinski, 2017 ). If they indeed ex- 

st, the disease subtypes often present neuroanatomically overlap- 

ing patterns, unlike the semi-simulated conditions with purely 

efined orthogonal patterns. None of the heterogeneity analysis 

ools were sufficiently powered to accurately disentangle hetero- 

eneity in small sample cohorts or with weak discriminative power 

f pattern identifiability in our experiments. In this case, care must 

e taken to provide additional information, such as external vali- 

ation of subtypes to clinical profiles, to substantiate any clinical 

nterpretation of the identified subtypes. 

To sum up, our semi-simulated results and the application to 

DNI and PHENOM datasets emphasize the value of the current 

ork. We provide the semi-simulated experiments and the pro- 

osed model to the community and offer new vistas for future 

esearch in refining subtypes in brain diseases. The reproducibil- 

ty of clustering, effect size maps of subtypes, and sample imbal- 

nce should be carefully examined. Ultimately, good practices, such 

s extensive reproducibility analyses, including permutation tests 

 Chand et al., 2020 ), should be performed to support the subtypes’ 

tability and robustness. However, we observed a steady improve- 

ent of clustering performance with increased sample sizes even 

ith overlapping anatomical patterns. This is a promising sign for 

he utility of these machine learning-based clustering tools with 

he increasing demand for large neuroimaging consortia. 

Our model nevertheless has the following limitations. First, 

AGIC is designed for “pure” clustering tasks that seek the dis- 

ase’s subtypes without considering the disease progression fac- 

ors or stages ( Young et al., 2018 ). A future direction is extending 

AGIC to assign subtypes to longitudinal scans and study disease 

rogression. Moreover, the sample size of AD necessary to draw a 

olid conclusion for those subtypes may be larger than analyzed. 

lustering performance was positively associated with sample size 

n our simulation. Moreover, a possible extension of the proposed 

ethod is integrating clinical or genetic data to derive subtypes 

hat show consistency across different modalities. Lastly, external 

alidation of the claimed AD subtypes to an independent dataset, 

uch as the Dementias Platform UK (DPUK) ( Bauermeister et al., 

020 ), is another future direction. 
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